Java1.8中的Collections类的功能增强很多,你可以直接调用串行的Collections.stream()或并行的Collections.parallelStream()来对List,Set中的数据进行处理与操作(不支持Map)。
1:stream是什么?
java.util.Stream是一个接口,是1.8引入。它表示了某原子的序列,可以对原子进行各种操作,Stream可以是中间操作,也可以做为最重操作。作为中间操作时返回流对象本身,作为最重操作时返回某种类型的值。作为中间操作时可以在这个流上多次调用操作方法。
2:lambda表达式
其实lambda表达式实质上是个匿名函数,它由三部分组成:参数列表,箭头(->),以及一个表达式或语句块。来看一个示例:
public void sum(int a, int b){ return a+b;}
转为 lambda表达式为
(int a, int b) -> a + b;
还可以这样写,因为java会根据上下文推断出参数类型
(a, b) -> {return a + b;}
或
(a, b) -> a + b;
3:具体示例
package cn.huiyunche.driver.controller;import java.util.ArrayList;import java.util.List;import java.util.UUID;import java.util.concurrent.TimeUnit;import java.util.stream.Collectors;import org.apache.commons.collections.CollectionUtils;public class Lambda { private static ListlambdaList = new ArrayList<>(); private static String string = "string"; private static String integer = "integer"; public Lambda() { initData(string); } public static void initData(String flag) { if (CollectionUtils.isNotEmpty(lambdaList)) { lambdaList.clear(); } if (string.equals(flag)) { lambdaList.add("Ulrica"); lambdaList.add("Quella"); lambdaList.add("Cecilia"); lambdaList.add("Claudia"); lambdaList.add("Desdemona"); lambdaList.add("Indira"); } else { lambdaList.add("1"); lambdaList.add("2"); lambdaList.add("2"); lambdaList.add("3"); lambdaList.add("3"); lambdaList.add("4"); lambdaList.add("4"); lambdaList.add("4"); lambdaList.add("5"); lambdaList.add("5"); lambdaList.add("5"); lambdaList.add("6"); lambdaList.add("6"); } } // 这种方式就不多讲了,以前旧版本比较常见的做法 public static void runThreadUseInnerClass() { new Thread(new Runnable() { @Override public void run() { System.out.println("内部类实现的线程"); } }).start(); } // 新版本写法 public static void thred() { new Thread(() -> System.out.println("内部类实现的线程")).start(); } // 遍历list public static void ergodicList() { initData(string); System.out.println("=================遍历list开始==========>>>>>>>>>>>"); lambdaList.forEach((value) -> System.out.println("value = " + value)); System.out.println("<<<<<<<<<<<======遍历list结束====================="); } // 正序排序list public static void asc() { initData(integer); System.out.println("=================正序排序list开始==========>>>>>>>>>>>"); lambdaList.stream().sorted().forEach((value) -> System.out.println("value = " + value)); System.out.println("=================正序排序list结束==========>>>>>>>>>>>"); } // 倒序排序list public static void desc() { initData(integer); System.out.println("=================倒序排序list开始==========>>>>>>>>>>>"); lambdaList.stream().sorted((a, b) -> b.compareTo(a)).forEach((value) -> System.out.println("value = " + value)); System.out.println("=================倒序排序list结束==========>>>>>>>>>>>"); } // 过滤 public static void filter(String val) { initData(string); System.out.println("=================过滤开始==========>>>>>>>>>>>"); lambdaList.stream().filter((value) -> value.toLowerCase().contains(val.toLowerCase())).forEach((value) -> System.out.println("value = " + value)); System.out.println("=================过滤结束==========>>>>>>>>>>>"); } // map使用 public static void map() { initData(string); System.out.println("=================map使用开始==========>>>>>>>>>>>"); //lambdaList.stream().map((value) -> value.toUpperCase()).forEach((value) -> System.out.println("value = " + value)); lambdaList.stream().map(String::toUpperCase).forEach((value) -> System.out.println("value = " + value)); System.out.println("=================map使用结束==========>>>>>>>>>>>"); } //parallelStream (并行) 和 stream(串行) public static void stream() { System.out.println("=================parallelStream (并行) 和 stream(串行)开始==========>>>>>>>>>>>"); int max = 1000000; long t0, t1, count, millis; List list = new ArrayList<>(max); for (int i = 0; i < max; i++) { UUID uuid = UUID.randomUUID(); list.add(uuid.toString()); } // 串行 t0 = System.nanoTime(); count = list.stream().sorted().count(); System.out.println("count = " + count); t1 = System.nanoTime(); millis = TimeUnit.NANOSECONDS.toMillis(t1 - t0); System.out.println(String.format("串行排序耗时: %d ms", millis)); System.out.println("==========================="); long t00, t11, count0, millis0; List list0 = new ArrayList<>(max); for (int i = 0; i < max; i++) { UUID uuid = UUID.randomUUID(); list0.add(uuid.toString()); } // 串行 t00 = System.nanoTime(); count0 = list0.stream().sorted().count(); System.out.println("count0 = " + count0); t11 = System.nanoTime(); millis0 = TimeUnit.NANOSECONDS.toMillis(t11 - t00); System.out.println(String.format("并行排序耗时: %d ms", millis0)); System.out.println("==========================="); long millis00; millis00 = TimeUnit.NANOSECONDS.toMillis((t1 - t0) - (t11 - t00)); System.out.println(String.format("串行比并行排序多耗时: %d ms", millis00)); System.out.println("=================parallelStream (并行) 和 stream(串行)结束==========>>>>>>>>>>>"); } // noneMatch public static void noneMatch(String val) { System.out.println("=================noneMatch使用开始==========>>>>>>>>>>>"); initData(string); boolean bool = lambdaList.stream().noneMatch((value) -> value.contains(val)); System.out.println("contains bool = " + bool); bool = lambdaList.stream().noneMatch((value) -> value.endsWith(val)); System.out.println("endsWith bool = " + bool); bool = lambdaList.stream().noneMatch((value) -> value.startsWith(val)); System.out.println("startsWith bool = " + bool); System.out.println("=================noneMatch使用结束==========>>>>>>>>>>>"); } // allMatch public static void allMatch(String val) { System.out.println("=================allMatch使用开始==========>>>>>>>>>>>"); initData(string); boolean bool = lambdaList.stream().allMatch((value) -> value.startsWith(val)); System.out.println("bool = " + bool); System.out.println("=================allMatch使用结束==========>>>>>>>>>>>"); } // anyMatch public static void anyMatch(String val) { System.out.println("=================anyMatch使用开始==========>>>>>>>>>>>"); initData(string); boolean bool = lambdaList.stream().anyMatch((value) -> value.matches(val)); System.out.println("bool = " + bool); System.out.println("=================anyMatch使用结束==========>>>>>>>>>>>"); } // collect(过滤数据,返回List) public static void collect(String val) { System.out.println("=================collect使用开始==========>>>>>>>>>>>"); initData(string); List lists = lambdaList.stream().filter((value) -> value.toLowerCase().contains(val.toLowerCase())).collect(Collectors.toList()); System.out.println(String.format("lists.size: %d ", lists.size())); lists.forEach((value) -> System.out.println("value = " + value)); System.out.println("=================collect使用结束==========>>>>>>>>>>>"); } // reduce(拼接数据只返回一个结果集) public static void reduce() { System.out.println("=================reduce使用开始==========>>>>>>>>>>>"); initData(string); lambdaList.stream().reduce((value1, value2) -> value1 + value2).ifPresent(System.out::println); System.out.println("=================reduce使用结束==========>>>>>>>>>>>"); } // 统计大于2小于5 public static void groupBysum() { System.out.println("=================统计大于2小于5使用开始==========>>>>>>>>>>>"); initData(integer); lambdaList.parallelStream().map(Integer::new).filter(val -> val >= 2 && val <= 6).collect(Collectors.groupingBy(p -> new Integer(p), Collectors.summingInt(p -> p))).forEach((key, value) -> System.out.println("key = " + key + " value = " +value)); System.out.println("=================统计大于2小于5使用结束==========>>>>>>>>>>>"); } public static void main(String[] args) { thred(); runThreadUseInnerClass(); ergodicList(); asc(); desc(); filter("c"); map(); stream(); noneMatch("Claudia"); allMatch("U"); anyMatch("Claudia"); collect("c"); reduce(); groupBysum(); }}
输出结果
内部类实现的线程内部类实现的线程=================遍历list开始==========>>>>>>>>>>>value = Ulricavalue = Quellavalue = Ceciliavalue = Claudiavalue = Desdemonavalue = Indira<<<<<<<<<<<======遍历list结束======================================正序排序list开始==========>>>>>>>>>>>value = 1value = 2value = 3value = 4value = 4value = 4value = 5value = 6=================正序排序list结束==========>>>>>>>>>>>=================倒序排序list开始==========>>>>>>>>>>>value = 6value = 6value = 5value = 4value = 3value = 2value = 1=================倒序排序list结束==========>>>>>>>>>>>=================过滤开始==========>>>>>>>>>>>value = Ulricavalue = Ceciliavalue = Claudia=================过滤结束==========>>>>>>>>>>>=================map使用开始==========>>>>>>>>>>>value = ULRICAvalue = QUELLAvalue = CECILIAvalue = CLAUDIAvalue = DESDEMONAvalue = INDIRA=================map使用结束==========>>>>>>>>>>>=================parallelStream (并行) 和 stream(串行)开始==========>>>>>>>>>>>count = 1000000串行排序耗时: 826 ms===========================count0 = 1000000并行排序耗时: 781 ms===========================串行比并行排序多耗时: 44 ms=================parallelStream (并行) 和 stream(串行)结束==========>>>>>>>>>>>=================noneMatch使用开始==========>>>>>>>>>>>contains bool = falseendsWith bool = falsestartsWith bool = false=================noneMatch使用结束==========>>>>>>>>>>>=================allMatch使用开始==========>>>>>>>>>>>bool = false=================allMatch使用结束==========>>>>>>>>>>>=================anyMatch使用开始==========>>>>>>>>>>>bool = true=================anyMatch使用结束==========>>>>>>>>>>>=================collect使用开始==========>>>>>>>>>>>lists.size: 3 value = Ulricavalue = Ceciliavalue = Claudia=================collect使用结束==========>>>>>>>>>>>=================reduce使用开始==========>>>>>>>>>>>UlricaQuellaCeciliaClaudiaDesdemonaIndira=================reduce使用结束==========>>>>>>>>>>>=================统计大于2小于5使用开始==========>>>>>>>>>>>key = 2 value = 4key = 3 value = 6key = 4 value = 12key = 5 value = 15key = 6 value = 12=================统计大于2小于5使用结束==========>>>>>>>>>>>